
Programming Assignment with
Gradescope Autograder

Programming Assignment with Gradescope Autograder Page 1

Creating a Programming Assignment with Autograder

This documentation outlines setting up an autograder for unit and diff-style testing, along with
several test cases. Additional autograders are available on the Gradescope GitHub for your
reference: https://github.com/gradescope/autograder_samples

The Python autograder example showcases a variety of test cases. For instance, the 'TestFiles'
class checks for submitted files, ensuring all required files are present. Additionally, the
'TestIntegration' class conducts integration tests on the script, evaluating single input
expressions and checking the functionality to quit the program.
https://github.com/gradescope/autograder_samples/tree/master/python

Example Assignments with Autograder

The autograder supports Differential and Unit testing. Unit testing focuses on individual
functions or methods, ensuring a focused evaluation of critical components. For differential
testing, the entire program runs in a Python subprocess, enabling comprehensive input-output
testing. This approach allows for a broader assessment, as it examines the program’s behavior
as a whole.

Example Assignment Description for Unit Testing: You’ll be tasked with creating a class
called Fibonacci. This class should have a method named Fibonacci(n) that generates the
Fibonacci sequence up to n elements. Additionally, you’ll need to handle potential exceptions
using a custom exception class called FibonacciException. Submit your code in a file named
‘fib.py’.

Example Assignment Description for Differential Testing: “Write a C program, fib.c, to
calculate the nth Fibonacci number, ensuring that the program takes input from the user for the
value ‘n’.”

https://github.com/gradescope/autograder_samples
https://github.com/gradescope/autograder_samples/tree/master/python

Programming Assignment with
Gradescope Autograder

Programming Assignment with Gradescope Autograder Page 2

Example Unit Testing Assignment

We will prepare an autograder for 'fib.py', a Python program that generates Fibonacci
sequences. The program prompts users for the length of the sequence, generating it
accordingly. Unit testing will verify sequence accuracy and error handling.

Step 1: Create Files for Autograder

1. setup.sh

This script installs Python and the pip package manager. Then it uses pip to install our
two external dependencies.

2. run_autograder

This script copies the student's submission to the target directory and then executes the
test runner Python script.

3. run_tests.py

This python script loads and runs the tests using the JSONTestRunner class from
gradescope-utils. This produces the JSON formatted output to stdout, which is then
captured and uploaded by the autograder harness.

Programming Assignment with
Gradescope Autograder

Programming Assignment with Gradescope Autograder Page 3

suite = unittest.defaultTestLoader.discover('tests')
JSONTestRunner().run(suite)

This will load tests from the tests/ directory in your autograder source code, loading only
files starting with test by default. JSONTestRunner is included in gradescope-utils.

4. requirements.txt

This text file specifies the gradescope utils

5. tests (folder)

This folder contains the test cases starting with test. For our example, we will have one
test case, ‘test_simple.py’. The setUp method initializes a ‘Fibonacci’ object for
consistent testing. Test methods verify the ‘Fibonacci’ class's ‘fibonacci’ method with
various inputs, ensuring accurate generation of the Fibonacci sequence or the raising of
FibonacciException when appropriate. Decorators used include "Weight" for grading,
"Number" for test identification, "Visibility" to control display, and "Partial_credit" for
assigning partial credit on test failure.

Programming Assignment with
Gradescope Autograder

Programming Assignment with Gradescope Autograder Page 4

Step 2: Create Autograder Zip File

• Autograders are uploaded to Gradescope in zip format. When you are zipping up your
files, make sure to zip the files, and not the folder containing the files. Ensure your zip
file is named ‘autograder’.

Step 3: Setup Your Blackboard Assignment

1. In your Ultra course, select ‘view course & institution tools’

2. Select Gradescope Course

Programming Assignment with
Gradescope Autograder

Programming Assignment with Gradescope Autograder Page 5

3. For Original courses, select Tools, click More Tools, and choose Gradescope Course.

4. Click Submit to create a Gradescope Course link. Use this link to access Gradescope.

Programming Assignment with
Gradescope Autograder

Programming Assignment with Gradescope Autograder Page 6

5. Setup your Gradescope course, select Assignments in the left navigation, and click

Create Assignment

6. Select Programming Assignment, then click Next

Programming Assignment with
Gradescope Autograder

Programming Assignment with Gradescope Autograder Page 7

7. Provide the assignment name, release date, due date, and autograder points. Autograder

points are the total of test case weights, which in this case is 4.

8. Select your autograder zip file, then click Update Autograder

Programming Assignment with
Gradescope Autograder

Programming Assignment with Gradescope Autograder Page 8

9. After your autograder has been successfully built, click ‘Test Autograder’.

10. Upload the solution ‘fib.py’ to the autograder, then click Upload

Programming Assignment with
Gradescope Autograder

Programming Assignment with Gradescope Autograder Page 9

11. View results.

12. Deploy to Blackboard using the instructions found here ‘Syncing your roster.’

https://guides.gradescope.com/hc/en-us/articles/23583385497741-Using-Gradescope-LTI-1-3-with-Blackboard-as-an-Instructor#h_01HN61Q94TCGYHGKWZ472YYYES

Programming Assignment with
Gradescope Autograder

Programming Assignment with Gradescope Autograder Page 10

Example Differential Testing Assignment

We will prepare an autograder for 'fib.c', a C program that calculates the nth Fibonacci number.
The idea is that you can compile the student's code and then execute it in a subprocess using
Python. Then you can communicate with the subprocess by providing arguments via the
command line, or via standard input, and read standard output to see what the program
produced.

Step 1: Create files for Autograder:

1. setup.sh

This script installs Python and the pip package manager. Then it uses pip to install our
two external dependencies.

2. run_tests.py

This python script loads and runs the tests using the JSONTestRunner class from
gradescope-utils. This produces the JSON formatted output to stdout, which is then
captured and uploaded by the autograder harness.

3. run_autograder

This script copies the student's 'fib.c' submission to a designated directory, compiles it
into an executable, and then runs tests using a Python script named 'run_tests.py'.

Programming Assignment with
Gradescope Autograder

Programming Assignment with Gradescope Autograder Page 11

4. requirements.txt

This text file specifies the gradescope utils and subprocess

5. tests (folder)

This folder contains the test cases starting with test. For our example, we will have two
test cases ‘test_from_file.py’ and ‘test_subprocess.py’. test_from_file.py executes the 'fib'
program with an argument of 10 to generate the 10th Fibonacci number. It compares the
output with a reference output stored in a file named 'reference/10', asserting their
equality to validate correctness

For test_subprocess.py, each test method checks different scenarios, such as invalid
inputs and specific Fibonacci number calculations, by running the 'fib' program with
subprocess and comparing its output with predefined reference outputs. The '@weight'
decorator assigns a weight of 1 to each test case for grading purposes.

Programming Assignment with
Gradescope Autograder

Programming Assignment with Gradescope Autograder Page 12

6. reference (folder)

This folder contains a file named ‘10’, which contains ‘55’. This file is used for the
test_from_file.py where the referenceOutput is found in reference/10.

Step 2: Create Autograder Zip File

• Autograders are uploaded to Gradescope in zip format. When you are zipping up your
files, make sure to zip the files, and not the folder containing the files. Ensure your zip
file is named ‘autograder’.

Step 3: Setup Your Blackboard Assignment

After following the steps described earlier, test the Autograder with the solutions file 'fib.c':

	Creating a Programming Assignment with Autograder
	Example Assignments with Autograder
	Example Unit Testing Assignment
	Example Differential Testing Assignment

